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Abstract. A formal uniform asymptotic solution of the system of differential equations
g*U d*u.
h2_2] + O U =l kz'?:'{-‘szz:a’U]
for z € D and for real and small 4 is obtained, when D contains a curve-crossing point.

Asymptotic approximations for the solutions are constructed in terms of parabolic cylinder
functions. Analytical properties of the expansion coefficients are investigated,

1. Introduction

We consider the system of differential equations
, 42U,
h a4z + * )V = ez, HU;
2o (1)
R == + &)Uz = a(z, HU;
dz
where &, &,, o are functions of the complex variable z in the domain D which depend
on the parameter § in the complex domain G, (0 € G). We assume that a(z, 0) = 0. The
aim of this paper is to construct the vniform asymptotic expansion for the solution U for
small and positive values of the parameter % in the domain @ = D x G, which contains a
crossing point z == xp (i.e. a point where ®;(xp) = P,(xg)).

The problem of encrgy level crossing is of considerable practical importance. It appears
in different branches of physics (see, for example, [1,2]}, but it has no yet a general
analytical solution. The set of equations (1) appears in physics in the problem of non-elastic
collision of two atoms with masses M; and M; and is usually considered for 0 < z < o0,
where z is the distance between the atoms. The coefficients of the system have the form

R+ 1) MMy

where ¢ > 0, V; are the energetic terms of the electron, and Vys is the matrix element
of the states of the electron. The WKB solutions of the set (1) are well known [3,11].
They are not correct in the vicinity of the point zp where the energetic terms cross, i.e.
when Vi(zg) = Va(zo). The connection formulae for the WKB solutions for z < zp and
z > zp were obtained by Stueckelberg [3] with the help of phase-integral methods, and
from the time-dependent point of view by Landau [4]. The theory has also been developed
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by analysis in the momentum representation by Bykovskii et al [6]. Later it was treated by
Crothers et ¢l [7, 8] but only the model problem with linear potentials &, ®; and constant
coupling function o was considered.

An analogous phenomenon of the change of one linear combination of WKB solutions
into another in the vicinity of the crossing point of the potentials occurs in mechanics [5].
For example, it occurs in the system of two pendulums connected by a weightiess spring &
whose length 2 is equal to the distance between the points of suspension. The lengths of
the pendulums L; and L, change adiabatically. Finally this system is described by the set
of equations for small angles of inclination of the pendulums &; and ®;, namely

mL3()YO; + (mgLi(t) + ka®)@; = ka’©,

mLi(2)8q + (mgLa(t) + ka*)®, = ka’©),

The moment of time ¢ = fp where L1(f) = L2(%) corresponds to the crossing point of the
potentials ¢; and $, for the system (1). In mechanics it is well known that in this case
resonance occurs and the state of the system for ¢ < # and ¢ > f is described by different
linear combinations of the solutions of the set of equations.

The asymptotic expansions of the solutions of the linear system (1) obtained in this
paper are valid in the vicinity of the crossing point of the potentials and ailows one to find
out the solution of the system at any point, as well as the connection formulae for the WKB
solutions.

In this paper we use the comparison equation technique [9,10] and we establish
uniform asymptotic approximations for the solutions of (1) in terms of parabolic cylinder
functions. The important property for the fourth-order equation for the function U is
that both the coefficients of the equation and the turning points depend on 4. In the case
8 = 0 (& = 0), the turning points do not coincide exactly. The distance between them
is proportional to k. It has been shown in [10] how to construct the first term of the
expansion for the solutions of the second-order differential equation with two close turning
points and coefficients dependent on 4. However, the case of a higher-order equation and
arbitrary-order approximation has not been studied. Here one should mention an important
contribution by Fedoruk [11] to the investigation of the problem under consideration.

We do not consider the asymptotic nature of the formai solution in the present paper,
but the analytical properties of the coefficients in the asymptotic expansion are investigated,

2. WKB solutions

One can obtain from (1) the fourth-order differential equation for the function Uy:

"
2

1 " . 1 (Dl "
+o (E) U]’ + 'h—z‘ﬂ.’ (?) U[ =0. (2)

¢

I 1 LY
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The well known solutions of equation {2) when D does not contain any turning points

are [111]
VvvE - W 1 [
Yi2(2) = ——-\/—_—-——exp (:EZf Polt) dt)

PHoE

VAV E - 1 f*¢
¥3.4(2) = \/——exp (i— f Paolt) d:) .
4fp]20E h

In (3) we have introduced the notation p;p(z) (I = 1, 2, 3, 4) for the roots of the equation
lo(z, p. A) = p* + (&1 + PP + (21 P2 — ) =0 (4)
which can be written in the form

P20 = :l:\/tb(z) s W

3

)
P3n,40 = ﬂ:\/‘b(Z) - VWi(z) + o
where
D(z) = —3[P1(2) + P2(2)]
W(z) = 1[®1{z) — P2(z)] (6)

E =WV 402,

3. Reduction of equation (2)

It is easy to see that the WKB approximations of the functions A*U® (k = 0,1, 2,...) are
of the same order in A. We shall see later that it is also true for the uniform approximations.
That is why, keeping only higher-order terms in 4 in equation (2}, one can obtain the
following equation:

1 1
U + 3 U (@1 + $2) + Ui (@19, - 0®) = 0. 0
We assume that the following conditions are satisfied:

(i) ®;, &, are the analytic functions for all z € D, « is an analytic function for all
(z.8)e Q=D xG.

(i) At the point xy € D we have ®(xp) = Pa(xy) £ 0. Let us assume that ¢;{xg) > 0.
(ii1) a(x,0) = 0 and o(x, 8) 5= 0 when § # 0 for any x € D.

{iv) We suppose, that for any § € G the domain D contains only two turning points ;5 and
220, where pio(zio) = pao{zio) and pao(Zio) = pan(z.0) (¢ = 1,2). Here pyo (i =1.2,3,4)
are the roots of equation (7} and are given by (3).

To build the asymptotic expansion for the solutions of (7) we will follow the method
suggested in [12]. For that purpose we transform the symbol y (4) into the following form:

lo(p.k,8) = (p" + asp + a2)(p* + a1 p + a0) (8)
where

as = —(p1o+ p3o) = —(= (D1 + B2) — 2V @, B, — 0:2)/?

az = Propio = 2(— 01 P, — &)/?

a) = —a apg = dy.
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Lemma I. The functions a; (i = 1,...,4) are analytic for all (z, §) € Q.

Since equation (7) has no turning points other than 7,0 and zz9, ®®2 ~ a2 £ 0. It is
easy also to see that —(—(Py + $2) — 2/ DDy — )2 £ 0 for all z € D. Because of
a* > 0 ®;d, > 0, we have DDy + o # 0 for all (z,8) € . We observe that a; and
az are the analytic functions of z, because of their being square roots of non-zero analytic
functions.

‘We wish to obtain an asymptotic representations for four linearly independent solutions
of (7) that are uniform in D (including the points z;, zo). That is why we seek the asymptotic
expansions of two linearly independent solutions of (7), corresponding to the first bracket
of (8) in the form

1 ¥4
Uni,12(z, 8, h) = exp (ﬁf (P10 + P) df)

g 1T b
(AU (:l: 1€ ﬁsi) + VRBU (:t = \/_s,)) 9)

where U(z, x) is the Weber function, which satisfies the equation U" — ("—4- +a)U =0, We
assume that A, B, £ can be represented by

Alz.8,h)y =) ai(z, k' (10)
=0
=)
B(z,8,h) =) bi(z, )k (1)
=0
m -
(8, h) =Y H(@W (12)
i=0
E(z,8,h) =&z, 9). (13)
Using the anzatz (9) in (7) we get the following expressions for 7o and § [12]:
—1 ru@® «/—
(A F dt 14
olh) = 231' (5 ’ (9
5(z2,8)

V—E2/4 — () dg_- © JFd (15)

2/ z2(8}

where F = 3(pio — pa0)”.
We choose the branches of the roots here in the following way: +/F > 0 forF > 0.

Lemma 2. Equation (15) defines function §(z, 8) for all z € D, 8 € G with the following
properties:

(1) & is analytic in D x G;

(2) B2 /D) = 21,25

(3)E'(z,8)#0forall ze D, §eG.

The proof of this lemma is based on Hartogs theorem (see [12])
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To the next order of approximation for gy and &y we get the expresions [12]:

ap(z) = kexp (f v (1) dr) cosh (f (1112(1)“— [W) ) (16)
2 2 0

k z . z i S !
[ — Wy W —_—T ——
bg(Z) &_2/ o exp (./7; l(t) dt) sinh (/n ( 2(t) 5 T 52/ ro dl‘))

amn
where
1
W(z) = —— + +iF (18)
ZZ: -F ° Iczzl’A G%-F
1 F i3
"IIZ(Z) = '—a, + 2(2’ -+ F (19)
2ﬁ ( k=24 QIE —F k=Zz;4 413 —-F

a= '12'(1-7!0 + p30) gy = pr — 4. (20

The parameter t; can be found from the condition that function bg(z) is analytic at
=1

1 [=
T = ——[ Wy() dt. @1
b4 P

As we have seen, the roots pag, psg have branch points at the turning points Zj0, Z20.
But the functions ¥, andW; depend only on expressions pay + pao and pagpag. which are
analytic functions on{(z, §). This allows us to prove the following lemma.

Lemma 3. The coefficients ag, by, defined by (16),(17) are analytic functions for all
(z,5) € D x G.

The proof of the lemma in the case where the second bracket in iy(p, £, &) (8) does not
have multiple zeros in D hkas been carried out in [12] and it is easy to apply that proof to
this case.

The other two linearly independent solutions of equation (7) can be found by changing
the indices for the roots 1, 3 to 2, 4 in equations (14}-(20).

4. General equation

Now we shall consider the differential equation (2) with the coefficients and turning points
depending on the small parameter #. The symbol of equation (2) has the form

1y o\ 1
Kz, p, &) = p* 4+ (1 + ©2)p? + (& Py — 2)+20‘rh( )p +2°’h(a) 2P

1\" 1 &
+Fah? (—) P+ = hz( ') . (22)
o h? o

The roots of the characteristic equation I(z, p, 8} = 0 and the turning points depend
on the parameter k. p; = pi(z,h) (i = 1,2,3,4); zp(h), { = 1,2; k = 1,2. Here
ziy(h) (i = 1,2) are the roots of the equation pi(z. k) = pa(z, k) and z;;(k) are the
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roots of the equation pa(z, ) = pa(z, k). We accept that the functions ® and &, satisfy
conditions (i), (ii) and (iii) of the previous section. Condition (iv) will be the following:
for any § € G and & < ¢ the domain D contains only the turning points z; (k, 8}, where
(i =1,2; £k =1,2). In the previous part we used only the roots p; of the characteristic
equation for constructing the asymptotical solution of equation (7). Now we can repeat all
calculations and write the asymptotic solution of (2} in terms of p;(z, k).

However, we will not use this solution, because we cannot find the roots p;(z, i) of the
fourth-order equation [(z, p, §} = 0 exactly. We either cannot expand the roots p;(z, h),
because they have branch points at the turning points of equation (2). But the expressions
Pz, B+ ps(z, i), pilz, k) p3(z, ), pafz, ) + pa(z, h) and pa(z, k) pa(z, R} are analytic
functions for all {(z,8) € §2, h < £ as was the case for the roots of equation (7). This is
shown in the following lemma.

Lemma 4. Let us consider the expression
Up) = (P +amp+a)(pP’+ap+a)+ap’+ap’+epta  (23)

where a;, ¢;, i =1,...,4 are analytic functions for all (z;8) € D x G, ¢; = O(h), ¢ are
analyicon h for s <e. Let py# m, i =1,2, k=3,4forall (z,8) € D x G. Then:
(i} The analytical functions &;,i = 1,2, 3,4 exist for all {z,4) € D x G, k < ¢ such that

Py =P+ @ +bdp+(@a+b))pa+(ai+bip+(a+bo). (24)

(i) If the vector b is b = (b3, by, b1, bo)', the coefficient by in the expansion b =
by + by 4 «++ can be written in the form -

by = M~lc (25)

where M is the matrix

1 1 0 0O

mM=|a @ 1 17 (26)
an dr ay as

0 (8] apg Ga

Proof of lemma 4. Let B be the vector (0, bsb), babg + baby, babg)'. From (23) and (24)
we get the equation

Mb+fB=ec 2n
The determinant of the matrix M is

det M = (a3 — @2)(@2a) — a3ap) — @2 — a3 = —(p3 — p1}(p3 — p2)(Pa — P1)(Pa — p2)-
(28)

It is clear that the det M = O only in the case p; = p, § = 1,2, k =3,4. As follows
from the formulation of the lemma, det M # O and then we obtain from (27) the equation

b=M"'c- M8 (29)

In accordance with the condition ¢; = O(k), we have ¢ = h&. Then b = b and 8 = #23.
For small k: (h < £) we can solve the equation

b=M'e-rM'3 , (30)
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by successive approximations. The solution b is the analytic function for all (z,8) € D X G
and h < g, because of the function ¢ is analytic. The first-order term of the apprommatmn
on k for b can be found from (25).

In the case of curve-crossing we have the symbol of the equation
Iz, p,8) = (p* = (P10 + P10)P + Propa}(p’ — (P20 + Pw)P + Propeo) + csp” +cip+ -+
= (p* — (71 + PP + p1p)P* — (P2 + pa)p + papa) (31)

where ¢; = 2a(§)', ¢ = 20:(%’-)'. Using the results of lemma 4 we see that the

combinations of the roots p; + p3, p1 3, p2 + pa and pz p4 are analytic functions on (z, §)
and /. We can find two first terms in the series of them on A:

pr+pi=potpo—jot--

1
P1P3 = PP+ 2— €3 — ﬂf[ + -

Pr+ps=putpo—iat -

(32)

1
p2pa = paoPao + —03 - —c +-
a1 2a

The functions (p; — p3)* and (p2 — ps)* are analytic on % and z, and we can find two first
terms of the expansion

(71 — p3)* = filt, h, &) + O (33)
(p2 — pa)? = falt, h, 8) + O(R%) (34)
where
24 1y o\
£t 1 8) = (pro — pan) — — (a (—) (5% + po) + 2 (—1) ) (35)
P+ pw o o
2h 1y &\’
At .8) = (pm = pa’ = —=— (oe (;) (o + PR) + 20 (?') ) . (36)

Since the right-hand side of (35),(36) has zeros at the turning points of equation (2),
p1—p3 and pa— pg are not analytic on /4 and z. On substituting p1+ps, (p1—ps), p2+pas
(p2—pa)?, from (32)~(36) instead of pro+ps0, (Pro—P30)%, Pao+Pac, (P20—pao)? in (9)—21)
we get the asymptotic solution of equation (2) as

[ 1y i T
Ui2(z) = exp (5]-1',[ (Plo + p3o — ha (E) )) ds (amU (ﬂ:% eix"'"ﬁ&)

3+ A/_me’ (ﬂ:l— i 1 E])) {1+ 0Oy (37
1 z 1 .o 1
U13,14(z) = exp (Zh f (on + pao — he ( ) )) (duzU ( %, Ci“'mﬁfz)
+ vhboU' (:i:i%, et )) (1+ 0. (38)

Here the parameters 7; (i = 1, 2) are deﬂned by
1, = Tio + ATy + O(H2). (39)
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We can find the first term z;p from

1 z2{8.h)
To(h, 8} = ~om Vit h,8)de (40)
zi1(8.h)
and the function &;(z, &, k) is defined by
E!(Z.JJJ) Z
f V~E2/4 — 1;g(8, ) dE = f fi(t, k, &) dt. (41)
L NCY R ) ziz{8.k)

The turning points z;1(%) and g;(h) are the roots of the equation f;(z,#.8) = 0. The
coefficients ag; and by; are given by

4 F4 H Elf
aio(z) = kexp ( v, () dt) cosh Wi (f) — oty s | dit 42)
-/z-u (j;: ( 2 /53/4 + «;m) )
k z ' z i A
bin(z) = ———=—=—=¢Xp ( wn (o) dt) sinh ( (‘I-'fzft) — =] dt
y _Ei2/4 — 7o L" ’/;; 2 \ 5,'2/4 + Tio

(43)
where
I
! : 1
%(z)=—i,+a: Gk 1gp
& Z _F 2 Z _F
i ki {1+, i 2H{—1)i= i k=it (= 1P, fr2r =1y Bik
44)
1 F
Vi2(2) = —= (-'a,f +2a] .
WF ki =194 i 21yt Fik = F

ik
+F' )y Ti?) (45)
kit (=11, 2k (1=t Fik

a; = L= (pso + p3o) Gix = Pr — Gi. (46)

We can find the parameters 7,) (i = 1, 2) from the condition that function b;,(z) is anaiytic
at z = z;9:

I Z,2
m=~—f Wiae) dr. @)
3 0N

5. Thecase x =1

Let us consider the asymptotic formulae (37),(38) for the particular case ¢ = 0. We
calculate the integrals (40), (47) by residues and get

19 (0)h

e LN 2
RO R TR @)
f = 22O+ o 49)

T 20)(0) ~ @50
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Finally for the parameter r; we have

i

T =T+ AT(R) 4 - = —“z'h + O, (50)
Two Weber functions which we use in the expressions (37), (38) for Utz
1.y 51
) (ﬂ:%, exp(:l:;m)ﬁ)

are linearly dependent. Consequently, the solutions I/;; and U, are linearly dependent.
Consider the solution U;;. Then using the fact that in (37)

o ¥ £ _ 16]2
U :I:E,exp(:tzm)ﬁ =exp |~

for & 2 0 we obtain

z

Uy ~ J;ﬁ exp (-;; [ puy d:) 1)
and for & <0

Uy ~ ! exp (l fz Pwlt) dt) . (52)

VP h
Finally, the solution Uy for all real z has the form
Z
Uy~ :/:%;exp (%f —&d () dz) . {53)

In the same way for the solution Ui3 we get

1 I
Uiz ~ O exp (_Ef Vv=1(r) dl‘). (54)

It is easy to see from (53),(54) that in the case ¢ = 0 we get from uniform
aproximations (37), (38) WKB solutions of the equation
du,
h— Up=0
e + & Uy
which are valid for any x € D.
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