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Abstract. A formal uniform asymptotic solution of the system of differential equations 
d2Uj d2Uz 
dZ2 dz2 

h2-+QiUi =#U2 h2-+Q2U*=eUI 
for z E D and for real and small h is obtained, when D contains a curve-crossing point. 
Asymptotic approximations for the solutions are constructed in terms of parabolic cylinder 
functions. Analytical properties of the expansion coefficients are investigated. 

1. Introduction 

We consider the system of differential equations 
d2UI 

h 2 y  + Qt(z)Ui = 01(z, 6)Uz 

hZ-  + @ 2 ( ~ ) U 2  = U ( Z ,  6)Ui 

dz 

dz2 
d2 U2 

where @ I ,  (P2, U are functions of the complex variable L in the domain D which depend 
on the parameter 6 in the complex domain G, (0 E G). We assume that or(z.0) 0. The 
aim of this  paper^ is to construct the uniform asymptotic expansion for the solution U1 for 
small and positive values of the parameter h in the domain C2 = D x G, which contains a 
crossing point z = xo (i.e. a point where QI(XO) = Qz(xo)).  

The problem of energy level crossing is of considerable practical importance. It appears 
in different branches of physics (see, for example, [1,2]), but it has no yet a general 
analytical solution. The set of equations (1) appears in physics in the problem of non-elastic 
collision of two atoms with masses M I  and M2 and is usually considered for 0 c z < 00, 

where z is the distance between the atoms. The coefficients of the system have the form 

where E z 0, c;. are the energetic terms of the electron, and VIZ is the matrix element 
of the states of the electron. The WKB solutions of the set (1) are well known 13, I I]. 
They are not correct in the vicinity of the point zo where the energetic terms cross, i.e. 
when Vl(zo) = Vz(z0). The connection formulae for the WKB solutions for z c LO and 
z > zo were obtained by Stueckelberg [3] with the help of phase-integral methods, and 
from the time-dependent point of view by Landau [41. The theory has also been developed 

t On leave from: St Petersburg Academy of Airapace Technology. 198000 St Petersburg, Gertsena 67. Russia. 
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by analysis in the momentum representation by Bykovskii et a1 [6]. Later it was treated by 
Crothers et a1 [7,81 but only the model problem with linear potentials O,, O2 and constant 
coupling function o was considered. 

An analogous phenomenon of the change of one linear combination of WKB solutions 
into another in the vicinity of the crossing point of the potentials occurs in mechanics [SI. 
For example, it occurs in the system of two pendulums connected by a weightless spring k 
whose length a is equal to the distance between the points of suspension. The lengths of 
the pendulums Ll and LZ change adiabatically. Finally this system is described by the set 
of equations for small angles of inclination of the pendulums 01 and 02, namely 

I Jakushinn and S Linnaeus 

The moment of time t = io where Ll(t0) = LZ(t0) corresponds to the crossing point of the 
potentials 01 and (P? for the system (1). In mechanics it is well known that in this case 
resonance occurs and the state of the system for t < to and t > to is described by different 
linear combinations of the solutions of the set of equations. 

The asymptotic expansions of the solutions of the linear system (I)  obtained in  this 
paper are valid in the vicinity of the crossing point of the potentials and allows one to find 
out the solution of the system at any point, as well as the connection formulae for the WKB 
solutions. 

In this paper we use the comparison equation technique [9,10] and we establish 
uniform asymptotic approximations for the solutions of (1) in terms of parabolic cylinder 
functions. The important property for the fourth-order equation for the function U ,  is 
that both the coefficients of the equation and the turning points depend on h.  In the case 
6 = 0 (U = 0). the turning points do not coincide exactly. The distance between them 
is proportional to h.  It has been shown in [lo] how to construct the first term of the 
expansion for the solutions of the second-order differential equation with two close turning 
points and coefficients dependent on h. However, the case of a higher-order equation and 
arbitrary-order approximation has not been studied. Here one should mention an important 
contribution by Fedoruk [I 11 to the investigation of the problem under consideration. 

We do not consider the asymptotic nature of the formal solution in the present paper, 
but the analytical properties of the coeflicients in the asymptotic expansion are investigated. 

2. w m  soIutions 

One can obtain from ( I )  the fourth-order differential equation for the function Ut: 

+ C Y  (;)" - v,+-CY t, i2 (2)" - u,=o. 
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The well known solutions of equation (2 )  when D does not contain any turning points 
are [I I] 

Y l . Z ( Z )  = exp (.: j 2  plo(t) dt) 

Y3.4(2) = exp /‘ p&) dt) * (3) 

In (3) we have introduced the notation pi&) (i = 1,2,3,4)  for the roots of the equation 
lo(z, p. 1) 5 p4 + (@I + @2)PZ + (@I 0 2  - 012) = 0 (4) 

which can be written in the form 

PlO.ZO = k J @ ( Z )  + J G G - 3  
(5 )  

p30.40 = * J @ ( z )  - 

@ ( z )  = -i1@1(z) + @2(z)l 

Y(Z) = + [ @ I ( Z )  - @2(z)1 

E = V12+O12. 

where 

(6) 

3. Reduction of equation (2) 

It is easy to see that the WKB approximations of the functions hkU*) (k = 0. 1.2, . . .) are 
of the same order in h. We shall see later that it is also true for the uniform approximations. 
That is why, keeping only higher-order terms in h in equation (2), one can obtain the 
following equation: 

1 1 
U(”+-U”(@1 h2 I +@2)+-UI(oP,@,-a2)=O,  h4 (7) 

We assume that the following conditions are satisfied 

(i) @I, @Z are the analytic functions for all z E D, 01 is an analytic function for all 
(z, 6) E Q = D x G. 
(ii) At the point xo E D we have @I(XO) = @2(xo) # 0. Let us assume that @ I ( X O )  > 0. 
(iii) a ( x ,  0) 
(iv) We suppose, that for any 6 E G the domain D contains only two turning points z10 and 
ZZO, where P I O ( Z ~ O )  = P30(ZiO) and p d z i o )  = p d z L 0 )  (i = 1,2). Here pi0 (i = 1,2,3,4)  
are the roots of equation (7) and are given by (5).  

To build the asymptotic expansion for the solutions of (7) we will follow the method 
suggested in [12]. For that purpose we transform the symbol lo (4) into the following form: 

where 

0 and CY@, 6) # 0 when 8 # 0 for any x E D. 

l o ( p , h , &  = ( P * + ~ ~ P + U Z ) ( P ~ + ~ I P + ~ ~ )  (8) 

U 3  = -(PI0 + p30) = -(-(@I + 0 2 )  - 2 J V ) ” ’  
2 I/?. a2 = P I O P ~ O  = 2(-@1@2 - 01 ) 

al = -a3 Q =az .  
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Lemma 1. 

I Jakushim and S Linnaeus 

The functions a; (i = 1 , .  . . ,4) are analytic for all (z, 6 )  E SZ. 

Since equation (7) has no turning points other than ZIO and zzo, @ I  @z - a' # 0. It is 
easy also to see that -(-(@I + @z) - 2 J m ) ' / '  # 0 for all z E D .  Because of 
a2 > 0 @ I @ P ,  > 0, we have @ I @ Z  +az # 0 for all (z,6) E 52. We observe that a]  and 
a2 me the analytic functions of z, because of their being square roots of non-zero analytic 
functions. 

We wish to obtain an asymptotic representations for four linearly independent solutions 
of (7) that are uniform in D (including the points z,, 22). That is why we seek the asymptotic 
expansions of two linearly independent solutions of (7). corresponding to the first bracket 
of (8) in the form 

where U(a,  x )  is the Weber function, which satisfies the equation U"- ($ +a)U = 0. We 
assume that A,  B .  T g can be represented by 

m 

A(z .6 .h)  = E a i ( z , 6 ) h i  (10) 

B ( z ,  6, h )  = C b i ( z ,  6)h' 

r(6,h) = C s ( 6 ) h '  (12) 

i=o 

m 

(11) 
i=o 

m 

k 0  

t(z, 6, h)  = ((z, 8). (13) 

Using the anzatz (9) in (7) we get the following expressions for ro and [12]: 

where F = f (p io  - mo)'. 
We choose the branches of the roots here in the following way: 0 > 0 forF p 0. 

Lemma 2. 
properties: 
(1) 5 is analytic in D x G; 
(2) t W i , 6 )  = ~ 1 . 2 ;  

(3) 5'(z, 6) f 0 for all z E D, 6 E C. 

The proof of this lemma is based on Hartogs theorem (see 1121) 

Equation (15) defines function h(z ,  8 )  for all z E D, 6 E G with the following 
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To the next order of approximation for no and bo we get the expresions [12]: 

where 

a = ;(PI0 + p30) q k  P k  - a .  (20) 
The parameter r1 can be found from the condition that function bo(z) is analytic at 

z = z2: 

As we have seen, the mots p20, pm have branch points at  the turning points :IO, 220. 

But the functions Y1 and'& depend only on expressions pm + p a  and p20p& which are 
analytic functions on(z. 6). This allows us to prove the following lemma. 

Le"a3. 
( z ,  6) E D x G. 

The coefficients ao, bo, defined by (16),(17) are analytic functions for all 

The proof of the lemma in the case where the second bracket in lo(p,  h,  6) (8) does not 
have multiple zeros in D has been carried out in [I21 and it  is easy to apply that proof to 
this case. 

The other two linearly independent solutions of equation (7) can be found by changing 
the indices for the roots 1 ,  3 to 2, 4 in equations (14t(20). 

4. General equation 

Now we shall consider the differential equation (2)  with the coefficients and turning points 
depending on the small parameter h. The symbol of equation (2) has the form 

The roots of the characteristic equation l ( z ,  p ,  6 )  = 0 and the turning points depend 
on the parameter h: pi = p i ( z ,  h )  (i = I ,  2,3,4); zi,k(h), i = I , %  R = I, 2. Here 
zi . ,(h) (i = 1,2) are the roots of the equation p ~ ( z , h )  = p 3 ( z , h )  and zi.z(h) are the 
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roots of the equation p z ( z ,  h )  = p4(z. h).  We accept that the functions 9 and 9 2  satisfy 
conditions (i), (ii) and (iii) of the previous section. Condition (iv) will be the following: 
for any 8 E G and h < E the domain D contains only the turning points zin(h, 6), where 
(i = 1,2; k = 1,2). In the previous part we used only the roots pi  of the characteristic 
equation for constructing the asymptotical solution of equation (7). Now we can repeat all 
calculations and write the asymptotic solution of (2) in tem of pi(z ,  h) .  

However, we will not use this solution, because we cannot find the roots p i ( z ,  h )  of the 
fourth-order equation l ( z ,  p .  6) = 0 exactly. We either cannot expand the roots p ; ( z ,  h) ,  
because they have branch points at the turning points of equation (2). But the expressions 
P I ( z , ~ ) + P ~ ( z , ~ ) ,  P I ( z , ~ ) P ~ ( z , ~ ) ~  P Z ( Z . ~ ) + P ~ Z , ~ )  and P Z ( Z ~ ~ ) P ~ Z , ~ )  areanalytic 
functions for all ( z ,  8) E Q, h < E as was the case for the roots of equation (7). This is 
shown in the following lemma. 

Lemma 4. 

I Jakurhina and S Linnaeus 

Let us consider the expression 

KP) = ( ~ ' + a 3 ~  + a z ) ( p z + a t p + a o ) + ~ ~ 3 + c ~ ~ Z + c t p + c ~  (U) 

where ai. ci, i = 1,. . . , 4  are analytic functions for all ( z ;  6) E D x G, cj = O(h),  c, are 
analytic on h for h < E .  Let p ,  f px, i = 1.2, k = 3.4 for all (2.6) E D x G. Then: 
(i) The analytical functions bj. i = I ,  2,3,4 exist for all (z, 8) E D x G,  h < E such that 

U )  = (P' + (a3 + b3)p + (a2 + bd) (pz  + (a1 + ~ I P  + (no +bo)). (24) 

(ii) If the vector b is b = (b3, bz, bl, bo)', the coefficient bo in the expansion b = 
bo + bl h 4- * .  . can be written in the form 

bo = M-'C (25) 

where M is the matrix 

/ I  1 0 o \  

Proof of lemma 4. Let 
we get the equation 

be the vector (0, b3blt b3bo + bzb], bzbo)'. From (23) and (24) 

M b  + p  = c. (27) 
The determinant of the matrix M is 

detM = (a3 - ad(azal - a2 - 0,' = - (p3  - Pd(p3 - Pd(p4 - P I ) ( P ~  - P Z ) .  
(28) 

It is clear that the det M = 0 only in the case p;  = pk, i = 1,2, k = 3,4.  As follows 
from the formulation of the lemma, det M # 0 and then we obtain from (27) the equation 

b = M - l c  - M - ' P .  (29) 
In accordance with the condition ci = O(h),  we have c = hE. Then b =  hb and p = h2d.  
For small h: (h c E )  we can solve the equation 

6 = M-'E - h M - ' p  (30) 
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by successive approximations. The solution 6 is the analytic function for all (z. 6)  E D x G 
and h < E, because of the function c is analytic. The first-order term of the approximation 
on h for b can be found from (25). 

In the case of curve-crossing we have the symbol of the equation 

r(2, P+ 6) = (P2 - (PI0 + P30)P + P10P30)(Pz - (PZO + p40)P + PUrP40) f C3P3 + ClP + ' ' ' 
= (P2 - (PI f P3)P + PlP3)(P2 - (PZ f P4)P f PZP4) (31) 

where c3 = 2 a ( i ) ' ,  c1 = 2a(y)'. Using the results of lemma 4 we see that the 
combinations of the roots PI  + p3, PIP?.  pz + p4 and pZp4 are analytic functions on (2,s) 
and h. We can find two first terms in the series of them on h :  

PI f P3 = PI0 + P30 - ic3 + '. ' 
QZ 1 
2a3 2a3 

PIP3 = P1OP30 + -c3 - -c1 + " 
PZ + P4 = PZO + p4a - ;c3 + '  " 

a0 1 
2al 2al 

pZp4 = pZOp40 + -C3 - -C] + ' ' ' . 
The functions ( P I  - p3)' and (pz - p4)' are analytic on h and z, and we can find two first 
terms of the expansion 

(33) 

(34) 

( P I  - ~ 3 ) *  = fi(t, h ,  6 )  + O(h2) 

(pz - p d 2  = fz(t, h, 6) + O(hz )  

where 

Since the right-hand side of (35), (36) has zeros at the turning points of equation (2). 
p1 -p3 and pz-pd are not analytic on h and z. On substituting pI+p3, (p I -p# ,  pZfp4, 
(PZ-P~) ' ,  from (32H36) instead of PIO+PSO, ( P I O - P ~ O ) ~ ,  PZO+P~O, ( P Z I I - P ~ ~  in ( !+01)  
we get the asymptotic solution of equation (2)  as 

Here the parameters 7j (i = I ,  2)  are defined by 

rj = 7 ~ 0  + h7jl + O(h2). 
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We can find the first term 40 from 

and the function & ( z ,  6 ,  h )  is defined by 

The turning points zil(h) and ziz(h) are the roots of the equation J(r ,  h. 6) = 0. The 
coefficients aoi and bo; are given by 

where 

ai = $ ( - l ) i + l ( P I O  f p30) q i k  = Pk -ai .  (46) 

We can find the parameters r , ~  (i = 1,2) from the condition that function bj&) is analytic 
at z = zi2: 

5. The case a = 0 

Let us consider the asymptotic formulae (37),(38) for the particular case 01 = 0. We 
calculate the integrals (40),(47) by residues and get 
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Finally for the parameter rl we have 

(50) 
i 
2 

51 = rlo(h) + h r l l ( h )  + .. . = --h +O(hZ) .  

Two Weber functions which we use in the expressions (37),(38) for U1l.l~ 

are linearly dependent. Consequently, the solutions Ult and Ulz are linearly dependent. 
Consider the solution UII, Then using the fact that in (37) 

for tI 3 0 we obtain 

and for 51 < 0 

Finally, the solution UII for all real z has the form 

In the same way for the solution U13 we get 

It i s  easy to see from (53),(54) that in the case w 0 we get from uniform 
aproximations (37), (38) WKB solutions of the equation 

which are valid for any x E D .  
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